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Abstract. The diffusion-limited steady-state particle coalescence model of aggregation is 
solved in one dimension. The method presented can also be used to solve the time- 
dependent problem and is extensible to higher dimensions. 

Meakin (1983) and independently Kolb et al (1983) introduced a computer simulation 
model, cluster-cluster aggregation (CICI), to describe the flocculation of colloids. In 
this model N particles are randomly placed on an Ld lattice and started moving 
diffusively. When ever two particles occupy adjacent sites they stick irreversibly and 
the newly formed cluster of two particles continues diffusing. The same irreversible 
welding occurs whenever two particles in different clusters occupy adjacent sites and 
thus ever larger clusters are formed. The clusters formed by CICI are stochastic fractals 
(Mandelbrot 1982) with a complicated structure. 

Kang and Redner (1984) introduced a simplified version of cia, the particle 
coalescence model (PCM) in order to concentrate on the kinetic aspects of CICI. In the 
PCM clusters are defined to be single lattice sites which aggregate/coalesce whenever 
two or more clusters occupy the same lattice site. cici and PCM are equivalent in one 
dimension provided the excluded volume effect in cia is properly taken into account. 

Vicsek et al (1985) performed steady-state CICI simulations; single particles were 
injected into the aggregating system at a constant rate and large clusters were removed 
from it. This system was studied theoretically by Ricz (1985a) in a companion paper. 

Computer simulations and scaling arguments were used by Family et a1 (1986) to 
study a steady-state PCM in which the bonds joining clusters together could break. 
This system has also been studied by Elderfield (1987) using a field theoretic approach. 
Recently Family and Meakin (1988) have studied a computer simulation model of 
droplet growth in one, two and three dimensions in which droplets are placed one-by- 
one at random and overlapping droplets coalesce. In this model there is no droplet 
diffusion except t i s  a consequence of coalescence. 

PCM/CICI in one dimension has been solved by Spouge (1988) when all clusters 
diffuse at the same rate. This problem is tractable for two reasons. In one dimension 
any particle can only bond with its two neighbours; and since all clusters diffuse at 
the same rate any chosen particle undergoes a random walk independent of the other 
clusters in the system. Ricz (1985b) has solved the steady-state diffusion-limited 
annihilation problem (when two particles aggregate they disappear from the system) 
in one dimension and Torney and McConnel (1983) have solved the time-dependent 
version of the same problem. Spouge (1988) has shown how the solution of PCM in 
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one dimension solves a set of aggregation problems, PCM modulo N, in which an i 
cluster and a j cluster aggregate to form an ( i + j )  modulo N cluster. These models 
include time-dependent diff usion-limited annihilation in one dimension which is PCM 

modulo 2.  
In this paper we solve the canonical steady-state PCM in one dimension for the 

cluster mass distribution. In this model single particles are fed into the system and 
no clusters are removed. The increase in the total cluster concentration is balanced 
by the continual coalescence of clusters. The concentration of clusters of any fixed 
mass reaches a steady state but the large-mass tail of the cluster mass distribution 
evolves forever. 

We now precisely define our aggregation model and fix some notation. Consider 
a linear lattice on which point clusters hop randomly from bond to bond. When two 
clusters hop onto the same bond they aggregate; a cluster of k particles (a k-mer) 
occupying one bond aggregates with a p-mer on the same bond to form a (k+p)-mer.  
The hopping rate of the k-mers is 2a hops per unit time independent of k. Thus in 
the time interval d t  the probability that any given k-mer has hopped one bond to the 
left is a d t  and the probability that it has hopped one bond to the right is a dt. 
Monomers are added to the lattice at random at the rate p per unit time per bond. 
This model generalises the diffusion-limited annihilation model solved by RAcz (1985b). 

Consider a set of probabilities P y  where P y  is the probability that exactly N 
particles occupy the bonds between the lattice points i and j ( i  < j ) .  Also consider the 
sets A y  corresponding to the probabilities P y .  A y  is the set of states of the aggregating 
system for which there are exactly N particles in (i, j ) .  Thus P: = P(A; )  where P is 
the probability measure on the states of the aggregating system. 

There are several points to note. 
(i) We write ( i ,  j )  for the set of j -  i bonds between i and j .  
(ii) N particles in ( i , j )  may consist of any combination of k-mers with total 

mass N. 
(iii) The boundary values of P:  are P:. = 1 and P /  = 0, N > 0. This is because 

there are no bonds in ( i ,  i )  and hence there must always be exactly 0 particles in (i, i ) .  
The other boundary condition on P y  is P: + 0 as j - i + 00, N 2 0. 

(iv) Pt i+ l  is the Probability of finding a k-mer in ( i ,  i +  1). Coupled with an appeal 
to translational invariance this will give us the concentration of k-mers. 

The system of equations satisfied by the P;  is easily derived. We shall first consider 
P; and then the general case. Broadly the technique will be to find the set of states 
which can make the transition to a state in A y  as a result of only one hop of a k-mer 
and those states in A y  which can leave A y  with only one hop. 

Consider the set of states AYj-] - A ; .  There are no particles in ( i ,  j - 1) but not in 
( i ,  j ) .  Therefore there must be a k-mer on the bond ( j  - 1, j )  and a transition to a state 
in AYj will occur if that k-mer hops right. Since no particles in ( i , j )  implies that there 
are no particles in ( i ,  j - 1) we have z A i .  Thus the probability of a k-mer 
occupying the bond ( j  - 1, j ) ,  P(A:j- l  -Ai . ) ,  is given by P:j-l - P:. Similarly the 
probability of a k-mer occupying bond ( i ,  i + 1)  is P?+l,j - Pi  and thus c+, the transition 
rate into A; ,  is 

T Y  = ~r (P?+l,, + Pij-1- 2P; ) .  (1) 

The transition rate from A i ,  Ti-, can be derived in a similar way by considering 
A;-A8j+l and A;-A7-l,j which correspond to states with no particles in ( i , j )  and a 
k-mer on the bond ( j ,  j + 1)  or ( i  - 1 , i )  respectively. Transitions from Ai  occur when 
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the k-mer hops into ( i ,  j ) ;  they also occur when a monomer is added to one of the j - i  
bonds in ( i , j ) .  Upon putting the pieces together we find 

( 2 )  

(3) 

The system of equations satisfied by P;  where N > 0 is slightly more complicated 
to derive. Consider the pairs of sets A:-l -A:, A$+] - A:, and A: - A; - 

Transitions into and out of A: occur from the first and second pair respectively. 
For example, A:+l -A:  is the set of states with N particles in ( i ,  j +  1) but not in 
(i, j ) .  Thue a k-mer must occupy the bond ( j ,  j + 1) and a transition into A: will occur 
if that k-mer hops left onto the bond ( j  - 1 , j )  which is in ( i , j ) .  

Ignoring for the moment the effects of the addition of monomers into the aggregating 
system T;+=  L Y [ P ( A ~ _ ~ - A ~ ) + P ( A ~ + ~ - A ~ ) ]  and T r - =  a [ P ( A f - A E - , ) +  
P(A;  - A$+l)]. Now by elementary set theory A - B = A - A n B and thus P ( A  - B )  = 
P ( A  - A n  B )  = P ( A )  - P ( A  n B ) .  Using this result we find that T:++ T r -  has a 
remarkably simple form 

T;- = a ( -P:-l,.j - P:j+l + 2P; )  + p ( j  - i ) P ; .  

(d /d t )P i  = a ( P:+l,j + P: j-l - 2Pi.) + a ( P:-l , j  + P:j+l - 2 P i )  - p ( j  - i )  Pi.. 

We now write down (d/dt)P; = c: - TO,-: 

TY++ T N - = a ( P ~ l , j + P ~ l , j + P E _ l + P E + ]  U -4P:). (4) 

We now return to the effect of the addition of monomers. Their random injection 
into the aggregating system causes transitions into A: at the rate p ( j - i ) P ; - '  and 
transitions out of A: at the rate p ( j -  i ) P ; .  

Collecting these two sets of results we find that 

( d / d t ) P r =  (~(P:l,j+P:l,j+ PE-1+ PE+1-4P;) 

+ p [ ( j - i ) P : - l - ( j - i ) P r ] ,  ( 5 )  

Since the evolution rules which define this model are translationally invariant if we 
assume a translationally invariant initial distribution it follows that P: is only a 
function of j - i. Hence we define Pp to be the probability that there is a total of N 
particles in any randomly chosen k consecutive bonds. P p  satisfies the system of 
equations 

(d/dt)Pi  = 2a( Pivl - 2PO, + PE+l) - PkPi ( 6 )  

( d / d t ) P p = 2 a ( P ~ - l - 2 P p + P ~ + l ) + P k P p - 1 - p k P p  N>O. (7) 
Equations ( 6 )  and (7) describe the aggregation of point clusters. In their derivation 

it is necessary for the cluster to occupy only one bond because of the following 
possibility. Consider the situation of N particles in ( i ,  j + 1) and but not N in ( i ,  j ) .  
The extended k-mer partially situated on ( j ,  j +  1) could occupy all of ( i ,  j +  1). If it 
hopped left the number of particles in ( i ,  j )  would remain constant rather than increase 
to N as assumed in the derivation of equations ( 6 )  and (7). It is also necessary for 
the derivation that k-mers aggregate when they occupy the same bond because it is 
assumed that all of the particles on a bond hop together. If this were not the case the 
derivation would again fail in the situation of N particles in ( i , j +  1) and but not N 
in ( i , j )  because only p ,  say, of the k particles on ( j , j +  1) might hop left into ( i ,  j ) .  

Equations ( 6 )  and (7) can also be derived indirectly by extending the method of 
RAcz (1985b) who mapped steady-state diff usion-limited annihilation onto the zero- 
temperature kinetic Ising model with Glauber dynamics. The present aggregation 



882 B R Thomson 

model can be similarly mapped onto an infinite-state Potts model at zero temperature; 
however, the present direct method seems a more natural approach. 

If no new monomers are added to the aggregation system, i.e. p = 0, equations (6) 
and (7) describe standard time-dependent clcl on a line. This problem has been solved 
by Spouge (1988) using a different approach; in effect, he studied the evolution of the 
gaps between the pairs of monomers i, j and i, j +  1. 

We shall solve for the steady state described by equations (6) and (7) in the 
continuous limit. The continuous limit is taken by letting the lattice spacing A + O  
whilst the diffusion constant for individual k-mers, D = &A2, and the feed rate per 
unit distance, p* = @/A,  remain constant. The steady-state continuous system equations 
are 

O =  2D(d2 /dx2)P0(~)  - p * x P 0 ( x )  (8) 
O =  2D(d2/dx2)PN(x)  + p*xPN-' , (x)  - p * x P " ( ~ )  N > 0 .  (9) 

The boundary conditions are Po(0)= 1, PN(0)=O,  N>O and PN(x )+O as x+m, 
N 3 0. The concentration of k-mers is simply ck = (d/dx)PN(0),  N 3 0. 

We have assumed that the aggregating system reaches a steady state in which P N ( x )  
is constant; this is intuitively clear for any fixed N but a rigorous proof remains a 
topic for further research. A hand-waving argument that the concentration cN reaches 
a steady-state value is based on induction. Assume ck reaches a steady-state value for 
k <  N. Thus the concentration of the k-mers which can aggregate to form an N-mer 
is stable. It is assumed that the total number of clusters reaches a steady-state value 
with the influx of single clusters balanced by the coalescence of clusters. Thus the 
concentration of clusters with which an N-mer can aggregate and so reduce cN is 
constant. Since the sources and sinks for N-mers are stable cN must reach a constant 
value. Thus we have (in a hand-waving fashion) reduced the problem to showing that 
the total number of clusters reaches a steady-state value which can be shown by solving 
directly 

aPo/at  = ~ D ( ~ ~ / ~ x ~ ) P O ( X )  - p * x ~ ' ( x ) .  (10) 

We now simplify equations (8) and (9) by changing variables. Define R N  by RN(sx)  = 
P"(x) where s = (p*/2D)1'3. R N  satisfies 

(dZ/dx2)Ro(x) = xRo(x) (11) 
(d2/dx2)RN(x) = xRN(x)-xRN-l(x) N>O. (12) 

These equat;ons can be solved in turn for N = 0, N = 1, .  . . using Fourier transform 
techniques. We shall solve them for N = 0, 1 ,2  and implicitly establish some notation 
before formally introducing it. We shall then proceed to the general solution. 

For N = 0 the Fourier transform of equation (1 1) is 

- k2do = i( d /dk )dO (13) 

do( k )  = A: exp($k3) (14) 

Ro(x) = A:Ai(x) (15) 

where we define the Fourier transform off(x)  to be f(k) =If(.) exp(-ikx) dx. Thus 

where Ai(x) is the Airy function (Abramowitz and Stegun 1970) and A: = Ai(O)-'. 
For N = 1 the Fourier transform of equation (12) is 

-k21?'(k) = i (d/dk)d ' (k)  - i (d/dk)do(k)  (16) 
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which has fhe solution 

E ' ( k )  = (A:(ik)3+AA) exp(fik3) (17) 

where A: = -$A: and AA is determined by the normalisation constraint R'(0) = 0. 
Similarly for N ..- 2 

k2(k) = (A:(il~)~+A:(ik)~+Az) exp(fik3) (18) 

where A: = -:A:, A: = A: -$AA and Ai is determined by the normalisation constraint 
R2(0)  = 0. The inverse transforms of k'(k) and k 2 ( k )  are 

R ' ( x )  = [A:(d/dx)3+A;]Ai(x) (19) 

R 2 ( x )  = [ A : ( d / d ~ ) ~  + A : ( d / d ~ ) ~  + A;]Ai( x). (20) 

The high-order derivatives of Ai(x) can be reduced using (d2/dx2) Ai(x) = x Ai(x) 
(Abramowitz and Stegun 1970). From R ' ( x )  and R2(x) we can calculate the concentra- 
tions of 1-mers and 2-mers which are proportional to (d/dx)R'(O) and (d/dx)R2(0) 
respectively. However (d/dx)RN(0) is more easily evaluated directly from E N (  k) so 
we shall not pursue this approach further. 

We now show how to calculate (d/dx)RN(0)  for general N. First we note that the 
formal definition of A? is the coefficient of (ik)3" exp($ik3) in the expression for E N ( k ) .  

Let us assume that k N ( k )  can be expressed 
N 

k N ( k )  = A ? ( i l ~ ) ~ "  exp(fik3). 
f l = O  

From equation (12) 

(k)  = i(d/dk)dN+'(k) - i (d /dk)kN(k)  (22) k2kN+1 

it follows that 

kN+' (k)  = (- A:- ( i k ) 3 f l + 3 +  2 A:(il~)~" + A t + '  exp($ik3), (23) 
N 

,,=o 3n+3 , ,=I  

and 

Since go( k) = Ai(O)-' exp(;ik3) (equation (14)) induction shows that we have chosen 
the correct form for k N ( k ) .  

From the general form of RN+'(x) we now show that the boundary condition 
RN+'(x)+O as x+00 is satisfied. RN+'(x) must be of the form f(x)Ai(x)+g(x)x 
(d/dx)Ai(x) where f and g are polynomials of degree s $N since (d2/dx2)Ai(x) = 
xAi(x). Ai(x) and (d/dx)Ai(x) decay exponentially for large positive x (Abramowitz 
and Stegun 1970) so the boundary condition at infinity is satisfied. 

From equation (23) the A: satisfy 

A?+' = A:-A;-_,/3n n 3 l  (25) 

where we take A$+' = 0 and A t + '  is determined by the normalisation constraint 
RN+'(0) = 0. 



884 B R Thomson 

++) -(I-?) -( 1 x 4 - T) 1 x4x7 -( 1 x 4 x 7 - y) . . . - 
. . .  1 0 0 

1 
1 0 ' ' 2 =  [ ;+ -8 1 

. . .  1 
- 3  . . .  0 0 

- 

In order to satisfy the normalisation constraint we first note that (Abramowitz and 
Stegun 1970) 

. (33) 

1 ( i ~ k ) ~ "  exp($k3) dk = Ai(0)3"(f), (26) 21r 

where 

3"(5 ) ,=1 ,1 , lx4 ,1x4x7  ,... for n=0 ,1 ,2 ,3  ,... (27) 
and we define 

B, =3"(4),. (29) 
Using this notation the normalisation constraint can be written 

N 

A , N B , = o  
f l = O  

and thus 

N s 0 .  B,+l N 
A ,N+~=+A,N-  n = l  (..--)A: 3(n + 1)  

This is trivial for n > 0 and for n = 0 recall that A:+' = -Z,"+; A?+'B, and the result 
falls out quickly. 

We can now derive the recurrence relation satisfied by the concentration of N-mers, 

3N-1 
CN+l=- NSO. 

3N+3C" 

We first recall that C, = (d/dx)PN(0)  = ( d / d ~ ) R ~ ( o ) ( P * / 2 D ) " ~ .  Now 

(35) 

dx 
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and 

d 
21r dx 

(ik)3n+1 exp(fik3) dk =- Ai(0)3"($), 

where (Abramowitz and Stegun 1970) 

3"($), = 1 , 2 , 2  x 5,2 x 5 x 8, .  . . for n = 0 , 1 , 2 , .  . . . 
We define 

B; = 3"($),. 

Thus 
N d 

CN = - A i ( o ) ( p * / 2 ~ ) " ~  c A;B; 
dx f l = O  

(37) 

(38) 

(39) 

and we have reduced the problem of deriving the recurrence relation satisfied by the 
C N  to showing that 

This is established by multiplying the nth term in Z,"==, A f B : ,  AfBT by 

( 3 N - 1  +- 3 N + 2 )  -- 
3 N + 3  3 N S 3  

The nth term in A;+'B; is given by 

and the result falls out. 
This relation is valid for N b 0; thus from A: = Ai-'(0) 

d 
dx 

cN = Ai-'(O) - Ai(0)(p*/2D)"3(f)(2)($) . . . (v). (44) 

The total concentration of k-mers, X",=, cN,  is the probability that there is a k-mer on 
any chosen bond, 1 - Py. This normalisation relationship is easily verified by consider- 
ing the Taylor series expansion of ( 1  + x ) " ~  about x = 0 for x = -1  which gives 

(45) 1 =1+1 2+12 i 
3 3 6  3 6 9 * * * *  

Spouge (1988) has pointed out that the solution of the PCM solves an entire class of 
aggregation models, those in which a k-mer and a p-mer aggregate to form a ( k + p )  
modulo N mer. Here a O-mer is a ghost cluster which does not change the mass of 
the k-mer with which it aggregates. In particular this class of aggregation models 
includes diffusion-limited annihilation which is aggregation modulo 2. Thus the con- 
centration of l-mers in the diff usion-limited annihilation counterpart of the steady-state 
model we have considered is 
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This series can be summed by again considering Taylor series expansion of (1 + x)ll3 
about x = O f o r x = - 1  a n d x = l ;  

2 1 / 3 = ( 1 + 1 ) 1 / 3 - ( 1 - 1 ) 1 / 3 = 2 ( 3 + 3 ~ ~ ,  , .I. (47) 

Thus c- = Ai-’(O)(d/d~)Ai(0)(/3*/20)’/~2-~’~ as found by Rhcz (1985b). 
We have performed preliminary simulations which confirm equation (44) for c,; 

the resdts of more extensive simulation work on this aggregation model will be reported 
elsewhere. 

This paper has described the derivation and solution of equations describing 
steady-state diffusion-limited PcM/c ic i  in one dimension. The methods used are widely 
applicable. A similar set of equations to equations (8) and (9) for d-dimensional PCM 

can be derived; (dz/dxz) is replaced by the Laplacian operator for d dimensions and 
multiplication by x becomes multiplication by the ‘volume’ operator xyz . . . , In fact, 
it is probable th2.t the obvious generalisation of equations (8) and (9) for PCM on a 
fractal is correct. (See Anacker and Kopelman (1987), Lindenberg et a1 (1988) and 
Murat and Aharony (1986) for examples of diffusion-limited reactions on fractals.) 
Finally, this method can be extended to derive equations describing fluctuations. 
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